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ABSTRACT
Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are pre-
sented and analyzed in detail. These algorithms do not have optimal parallel
complexity, yet they show very good performance in practice. Queue-sortis de-
signed for fine-scale parallel architectures which allow the queueing of multiple
messages to the same destination. Barrel-sortis designed for medium-scale paral-
lel architectures with a high message passing overhead. The performance results
from the implementation of queue-sorton a Connection Machine CM-2 and barrel-
sort on a 128 processor iPSC/860 are given. The two implementations are found
to be comparable in performance but not as good as a fully vectorized bucket

sort on the Cray YMP.
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1. Introduction. Integer sorting is a subclass of general sorting which
exists when the keys to be sorted are integer in value. If the keys to be
sorted are allowed any value then the lower-bound sequential complexity
[13] to sort n keys is O(nlogn). However, when the keys are restricted to
be integers in the range [1,n], the lower-bound sequential complexity [13]
to sort n keys is only O(n). The problem of integer sorting is particularly
important in Monte Carlo simulations. For this reason it has been selected
as one of the kernel benchmarks used to evaluate parallel supercomputers
for the Numerical Aerodynamic Simulation (NAS) program at NASA [3].

The bucket sort algorithm [1] (or distribution counting [13]) achieves



the lower-bound O(n) time for sequential integer sorting. On a parallel
machine, the performance bounds are limited by processors as well as time.
Therefore the performance bound of parallel algorithms must be measured
as the product of the processor bound, P, and the time bound, 7'. A parallel
algorithm is optimal if its performance bound PT is equal to the sequential
time bound, T, for the problem. Several optimal parallel integer sorting
algorithms have been proposed (see [14, 9]). However these algorithms have
proved unsuitable for implementation on single instruction multiple data
(SIMD) or multiple instruction multiple data (MIMD) distributed memory
machines like the Connection Machine CM-2 or the Intel iPSC/860. This
paper presents two parallel integer sorting algorithms which, although not
optimal, have been implemented and shown to give good performance on
these machines. Some theoretical analysis of these algorithms is presented,
however the algorithms of this paper were borne out from an applications
oriented perspective and emphasis is given to the application analysis.

The remainder of this section defines key terms used throughout the
paper. Section 2 overviews the two machine models used. Sections 3 and
4 introduce and analyze the two sorting schemes, namely queue-sort and
barrel-sort, respectively. Performance results are compared and discussed in
section 5 and conclusions are presented in section 6.

1.1. Some Definitions. A sequence of keys, { K;|i =0,1,..., N — 1},
will be said to be sorted if it is arranged in non-descending order, i.e. K; <
K11 < Kiyg.... The rank of a particular key in a sequence is the index
value ¢ that the key would have if the sequence of keys were sorted. Ranking,
then, is the process of arriving at a rank for all the keys in a sequence.
Sortingis the process of permuting the keys in a sequence to produce a sorted
sequence. If an initially unsorted sequence, Ky, K1,...,Ky_1 has ranks
r(0),r(1),...,7(N — 1), the sequence becomes sorted when it is rearranged
in the order K, (o), K1), .., K, (v_1)- Sorting is said to be stable if equal
keys retain their original relative order. In other words, a sort is stable
only if r(i) < r(j) whenever K, = K,;) and ¢ < j. The algorithms
presented here are not stable. Key density refers to the number of equal
keys in a sequence. The prefix sum of a sequence is the sequence obtained
as the running sum of the original sequence elements. The 7t element of
the prefix sum of sequence K; is given by K; = Y} K;. Prefix operations
are also referred to as scan operations [5]. A scan operation with binary
operator @ across an ordered set [ag,ay,...,a,_1] returns the ordered set
[ag, (agB ar),...,(agP a1 @ - P an—1)]. All logarithms are to base 2 unless
otherwise indicated.



2. Machine Models. The algorithms presented here were implemented
on two different parallel machines at NASA Ames, the Thinking Machines
Connection Machine CM-2 and the Intel iPSC/860. The architectures are
briefly described below.

2.1. Connection Machine. The CM-2 is a massively parallel SIMD
computer consisting of many thousands of bit serial data processors under
the direction of a front end computer. The system at NASA Ames consists of
32768 bit serial processors each with with 1 Mbit of memory and operating
at 7 MHz. The processors and memory are packaged as 16 in a chip. Each
chip also contains the routing circuitry which allows any processor to send
and receive messages from any other processor in the system. In addition,
there are 1024 64-bit Weitek floating point processors which are fed from the
bit serial processors through a special purpose “Sprint” chip.

The Connection Machine CM-2 can be viewed two ways, either as an 11-
dimensional hypercube connecting the 2048 CM chips or a 10-dimensional
hypercube connecting the 1024 processing elements. The first view is the
“fieldwise” model of the machine which has existed since its introduction.
This view admits to the existence of at least 32768 physical processors (when
using the whole machine) each storing data in fields within its local mem-
ory. The second is the more recent “slicewise” model of the machine which
admits to only 1024 processing elements (when using the whole machine)
each storing data in slices of 32 bits distributed across the 32 processors in
the processing element. Both models allow for “virtual processing”, where
the resources of a single data processor may be divided to allow a greater
number of virtual processors.

Regardless of the machine model, the architecture allows interprocessor
communication to proceed in three manners. For very general communi-
cation with no regular pattern, the router determines the destination of
messages at run time and directs the messages accordingly. This is referred
to as general router communication. For communication with an irregular
but static pattern, the message paths may be pre-compiled and the router
will direct messages according to the pre-compiled paths. This is referred to
as compiled communication and can be 5 times faster than general router
communication. Finally, for communication which is perfectly regular and
involves only shifts along grid axes, the system software optimizes the data
layout by ensuring strictly nearest neighbor communication and uses its
own pre-compiled paths. This is referred to as NEWS (for “NorthEast West-
South”) communication. Despite the name, NEWS communication is not
restricted to 2-dimensional grids and up to 31-dimensional NEWS grids may
be specified. NEWS communication is the fastest.

The Connection Machine’s processors are used only to store data. The



program instructions are stored on a front end computer which also carries
out any scalar computations. Instructions are sequenced from the front end
to the CM through one or more sequencers. Each sequencer broadcasts
instructions to 8192 processors and can execute either independent of other
sequencers or combined in two or four.

2.2. Intel iPSC/860. The Intel iPSC/860 (also known as Touchstone
Gamma System) is based on the new 64-bit, 40 MHz i860 microprocessor
by Intel. A single node of the iPSC/860 system consists of the i860, 8 MB
dynamic random access memory, and hardware for communication to other
nodes. The system installed at NASA Ames consists of 128 computational
nodes arranged in a seven dimensional hypercube using the direct connect
routing module and the hypercube interconnect technology of the earlier,
80386-based iPSC/2. The point to point aggregate bandwidth is 2.8 MB/sec
per channel and the latency for the message passing is about 149 us for
message lengths over 100 bytes (see [8]).

Interprocessor communication proceeds through the send and receive
system calls. Any processor can send a message to any other processor,
however the destination processor does not acquire the message unless it
issues a receive. The high communication overhead is a result of having a
software implementation of the message passing protocols.

The complete system is controlled by a system resource module (SRM),
which is based on an Intel 80386 processor. This system handles compilation
and linking of source programs, as well as loading the executable code into
the hypercube nodes and initiating execution. Programs generally make no
use of the SRM once they begin execution on the nodes.

3. Fine-Scale Parallel Integer Sort. The fine-scale parallel integer
sorting algorithm is similar to that described in [10], however it makes use of
the send_to_queue instruction [16] on the Connection Machine CM-2. This
is a very powerful instruction that takes multiple messages for the same
destination and stores them in a queue at the receiving processor. Each
processor must have the same size buffer allocated to store the queue. This
restriction is due to the SIMD nature of the Connection Machine, which em-
ploys a single stack pointer for processor memories and thus it is impossible
to allocate variable amounts of memory across processors. The allocated
buffer must also include a word in which to store the number of elements
destined for the queue. If the buffer can store g; messages, and some num-
ber greater than ¢, of messages are sent to a particular processor, then the
excess messages are lost but this word will still store the number of messages
intended for that destination.



3.1. Fine-Scale Parallel “Queue-Sort” Algorithm. The n keys
are stored in a one dimensional virtual processor (VP) set, call it VP1,
of size n. Each VP has an index ¢ and stores key K;. The keys have range
[1,m], where m is no greater than O(n), therefore m buckets are needed to
sort them. The main idea behind the algorithm is to create a queue for each
bucket, perform a prefix sum over queue elements to compute the rank, and
return the rank. The algorithm must be iterated when there are key densi-
ties greater than the maximum queue size. The steps in a single iteration of
the queue-sort algorithm are as follows:

Queue-Sort Algorithm

1. In a distinct VP set, call it VP2, allocate memory in m virtual
processors for a queue of size ¢;. The value of ¢, will depend on the
available memory, in the analysis below we assume mgs; = O(n).

2. Fach processor in VP1 computes a destination address in VP2 based
on the value of its key. The n processors of VP1 then collectively
send their self-address to this destination using send_to_queue.

3. If this is the first iteration, then the m processors of VP2 collectively
perform the prefix sum

k
Sk=>_1Qil
1=0

where |(;| indicates the number of elements in the queue for the i*
bucket, i.e., the key density. The result, for each bucket, is a sum,
Sk, equal to the maximum rank for the keys in that bucket. Note
that the value of |@;| is known from execution of the send_to_queue
instruction in the previous step.

4. The m processors of VP2 compute a rank for each queue member by
subtracting each member’s index (in the queue) from the maximum
rank as given by 5.

5. If more than ¢, messages were sent to a queue, then 5y is adjusted
as

Sk A (Sk - QS)

in preparation for the next iteration.

6. The processors of VP2 send the computed ranks to the appropriate
processors in VP1 as given by the addresses stored in each queue.
Processors in VP1 which receive ranks are marked and do not par-
ticipate in the next iteration.

Iterations are repeated until all the keys have been ranked.



3.2. Theoretical Analysis. Blelloch [5] describes a “scan-model” of
computation for the Connection Machine (that is, the Exclusive Read Ex-
clusive Write (EREW) model but including prefix of “scan” operations as
unit-time primitives). This model is assumed in the following analysis.

The performance of this algorithm depends on the key density distri-
bution. If pi... is the maximum key density, then [p.q./¢s| iterations are
required to complete the sort. Recall ¢; is fixed by the available memory.
Assume that O(n) words of memory are available for m queue’s, such that
¢s = O(n)/m. In the following we will allow m to be any number less
than but evenly divisible into n, yet greater than or equal to the number
of physical processors, N,. For example, m can be: n/ log?n,n/logn or n
for n = 232, Therefore g, will have size O(n/m). Clearly then, steps 1 and
5 will take O(1) time and step 4 will take O(n/m) time, each with O(m)
processors. Communication is required in steps 2, 3 and 6; these require
special consideration. In the scan model of the CM-2, step 3 requires O(1)
time to complete using O(m) processors. The time for step 2 will depend on
the number of combinations required to complete the send_to_queue. As is
shown in the application analysis below, this is essentially given by the ratio
n/m so step 2 has time complexity O(n/m). Step 6 must be carried out
iteratively using at most ¢; sub-iterations. The time for each sub-iteration
is O(1) in the scan model, therefore the time to complete step 6 is O(n/m)
using O(m) processors.

In summary, calculations carried out on VP1 have time complexity
T = O(n/m) and processor complexity P = n. Calculations carried out on
VP2 have time complexity 7" = O(n/m) and processor complexity P = m.
Therefore one full iteration of queue-sort has parallel complexity (that is,
PT) of O(n?/m). The sort will complete in O(1) iterations only if pyqaz is
O(n/m). This proves the following theorem:

THEOREM 3.1. The queue-sort algorithm sorts a disordered sequence
of n integers chosen randomly in the range [1, O(m)] with no more than
O(n/m) repeated values in time O(n/m) using n scan model processors.

3.3. Application Analysis. The amount of arithmetic computation
in queue-sortis minimal, and the greatest contribution in time is from inter-
processor communication. Inter-processor communication occurs only in
steps 2, 3 and 6. Step 3 gets executed just once and has negligible effect
on the overall execution time. Therefore only steps 2 and 6 need be con-
sidered for analysis. Since network contentions is reduced as fewer messages
are transmitted, and since each successive iteration requires fewer messages
to transmit, the time required by steps 2 and 6 decreases as the calculation
proceeds. In the following, models are developed to account for the effect of
network contention on communication performance.



For analysis, a disordered sequence of n = 22% keys was created in a
sequential fashion on the front end and distributed uniformly over the phys-
ical processors of the Connection Machine. The key’s were chosen from the
range [0, m) with an approximately Gaussian distribution and m = 29,
Specifically, if 7; is a random fraction uniformly distributed over [0,1), then
each key value was obtained as:

K; — Lm('r4i+0 + T4541 + Tai42 + T4i+3)/4J for 2= 0,1,...,N —1.

A sample of the key density distribution is shown in figure 1. The
maximum key density is actually 73, but the figure only shows key densities
for every 128" key value and the maximum is missed. There are 417,812
different keys.
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FiGg. 1. Sample of the approximate Gaussian key density distribution.

As expected, steps 2 and 6 took the majority (~97%) of the time. Fig-
ure 2 presents the time to sort, using 8k processors, as a function of the
queue size. Note that the time spent in step 6 is independent of the queue
size. Changing the queue size changes the number iterations necessary for
queue-sort to complete. However, the total number of subiterations taken
in step 6 always must equal p,,q., for this reason its time is unaffected by
the size of ¢;. On the other hand, the time spent in step 2 is affected by the
size of gs. As ¢, increases, fewer iterations are required so the overhead in
using send_to_queue is paid fewer times. However, even when the number
of iterations is constant, the time spent in send to_queue decreases with



increasing gs. This implies that send_to_queue behaves in a manner similar
to a conventional send in that the communication time is determined by
the network bandwidth. The queueing of messages occurs in the network, so
network contention has a great impact on the performance of send to_queue.
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FiGg. 2. Time to sort as a function of queue size for Gaussian key distribution: —o— total

time; -.-.+-.-. time for steps 2 and 6; - -z- - time for step 6.

In the first iteration, all processors in VP1 are sending messages to
VP2, therefore the time required by send_to_queue is constant regardless of
¢s. However, in the second iteration, the number of active processors in VP1
decreases as g, increases (because fewer keys remain to be ranked). Therefore
the communication time decreases because of reduced network contention.
Figure 3 presents the time accumulated by each send_to_queue instruction
as ¢s increases. It is evident from this figure that reducing network contention
is more important than decreasing the communication start up cost in terms
of improving performance. The issue of network contention is discussed more
fully below.

Figure 4 presents the fraction of active processors in VP2 per subiter-
ation of step 6. The values have been normalized by the total number of
processors in the VP set. From this curve one can determine the number of
messages communicated in a particular subiteration of step 6. Network con-
tention affects step 6 in the same manner as step 2. As there are fewer keys
remaining to be ranked, network traffic decreases and the communication
time for each subiteration of step 6 decreases.

The solid curve in figure 5 presents the time spent per subiteration of
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FiG. 3. Time accumulated by each send_to_queue as a function of queue size: —o— first
iteration; - -a- - second iteration; - --* - - third iteration; -.-.+-.-. fourth iteration.

step 6 as a function of the natural logarithm of the fraction f of active
processors in VP2. It has been normalized by the time spent in the first
iteration (note that only 80% of the processors in VP2 were active in the
first iteration). The curve is approximately linear for In(f) > —4, the abrupt
deviation of the curve for In(f) < —4 occurs because the number of active
virtual processors in VP2 drops below 8k, the number of physical processors.
For purposes of analysis we can approximate this curve as

1+0.25In f )

3.1 Ty = {0554 04 ——F——
(3-1) ( * 14 0.251n(0.8)

where T is the total time, f is the fraction of processors active, and T
is the time to send one message with f = 0.8. The experiment measured
T, = 0.184 sec with 8k processors, therefore

(3.2) T, = 0.189 + 0.0219In /.

The broken curve in figure 5 shows the model for 7. Note that it is valid only
while the number of active virtual processors is greater than the number of
physical processors which, in this case, implies f > 276, For smaller values
of f we use Tso = 0.55T .

The same sort of approximation can be made for send_to_queue with
the data from figure 3, however it is necessary to model the number of
message collisions expected. This can be approximated by the ratio Ry =
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Nyp1/Nyp2, where Nypq is the number of processors sending messages from
VP1 and N,y is the number of processors receiving messages at VP2. Both
these numbers can be obtained from figure 4. The solid line in figure 6
presents the the time measured for send to_queue as a function of R,..
For R,.s > 4, the curve is approximately linear, as expected. The abrupt
deviation from linearity for R,.; < 4 is due to both N,,; and N, dropping
below N, the number of physical processors. One can model send_to_queue

by
(33) Tq = (Ract - Racto )qu

where R, is the value of R,.; where N, and N,p; drop below N,, and
T,o is chosen to give the correct time for the initial value of R,.. For the
Gaussian key density distribution, the first iteration had Ry, = 20.1 and
the measured time for send_to_queue was 11.0 sec, thus T, = 0.68 sec with
Ryct, = 4.0. The broken curve in figure 5 shows our model for 7,. Note
that it is valid only while R, > 4.0, and for smaller values the model uses
T, = 0.24, the time measured for Ny, = Nypp = 1.

In order to test these models, queue-sort was applied to a disordered
sequence of integer keys sampled from the range [0, m) this time with a
linear distribution. Specifically, key values were assigned as

K; «— m/r;
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with m = 2!°. A sample of the key density distribution is shown in figure
7; the maximum key density was 58 and there were 507810 different keys.
Figure 8 presents the number of active processors in VP2 per subiteration
of step 6. Using figure 8, the model for T predicts a time of 8.1 sec to
complete step 6. The measured time was 7.7 sec, which is within 5% of our
predicted time. Figure 9 presents the measured and predicted times for 7,
as a function of R,.. The agreement is very close especially for large values
of Ry, which, of course, is how the model was calibrated. Finally, figure
10 presents the measured and predicted times for queue-sort for the density
distribution of figure 7. Again there is excellent agreement, with the model
being accurate to 5% of the measured times.

It should be obvious from these results that the effect of decreasing net-
work contention on communication performance must be considered when
analyzing communication-iterative algorithms like queue-sort. The success
of these models in predicting communication performance as a function of
network contention is extremely encouraging and indicates that the perfor-
mance of complex and changing communication patterns can be predicted
with some accuracy using relatively simple models for communication.

4. Medium-Scale Parallel Integer Sort. The medium-scale paral-
lel integer sorting algorithm attempts to load balance the sorting problem
through an approximate representation of the key density distribution. Typ-
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ically, in a sequential bucket sort there are m buckets for m possible key
values. The parallel algorithm, however, uses m’ barrels (where m’ < m) to
determine the number of keys in each m/m’ subrange of key values. The
counts stored in the barrels are used to approximate the expected loads for
each processor and thereby determine a balanced decomposition. The idea
shares some similarities to that of sampling the sequence to obtain a balanced
decomposition, although the latter has been applied primarily for the case
of general comparison based sorting. Huang and Chow [12] first proposed
sampling the sequence as a means of determining an appropriate partitioning
for the data. Shi and Schaeffer [15] apply the same idea with great success
in their Parallel Sorting by Regular Sampling (PSRS) algorithm. In PSRS,
a regular sample taken from the (locally ordered) sequence is globally sorted
and itself gets sampled to determine the parallel decomposition used in the
final global ordering of the sequence. Barrel sort differs in that it uses infor-
mation from the whole sequence, not just a sample, to determine a suitable
parallel decomposition.

4.1. Medium-Scale Parallel “Barrel-Sort” Algorithm. The n keys
are evenly distributed across p processors such that each processor, k (k €
[1,p]) has keys {K;|i € [(k— 1)n/p,kn/p)}. In the following, the notation
{-} will be used to indicate a sequence of n elements distributed in some

unspecified manner over p processors. The keys have range [1,m], where m
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Fig. 7. Sample of the linear key density distribution.

is no greater than O(n), therefore m buckets are needed to sort them. Since
it is impossible for each processor to keep m buckets, the processors have to
work on some subrange of key values. The main idea behind the barrel-sort
algorithm is to use a smaller number, m’, of barrels to determine how to dis-
tribute the m buckets. The size of m’ will depend on the available memory.
The steps in the algorithm are as follows:

Barrel-Sort Algorithm

1. Each processor counts the number of keys falling into each of its m’
barrels. Let Bj; be the 4t barrel in processor k. Each barrel, Bjp,
will store the count of keys in the subrange [jm/m/, (7 + 1)m/m')
in processor k.

2. Compute the sum B; = Y-7_, Bjx, and copy the result to all pro-
Cessors.

3. Use B; to distribute subranges of [1,m] such that each processor
will receive approximately the same number of keys. For a perfect
load balance, each processor, k, should handle a subrange [ag, bx)
with n/p keys. Values of ag, by that approximately yield this load
distribution are determined from B; as follows:

(a) Perform a prefix sum on B;. Let the result be ;.

(b) In all processors, for k = 1,...,p, find the index [; in 5; such
that 5;, < kn/p < Stp+1-

(c) Set by = lym/m’.

(d) Set @y =1, and a = by for k > 1.
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algorithm with the linear key density distribution.

4. Each processor determines which subrange [ag, br) contains each of

its keys and stores the result in a local array P;. Each value in P; is a
pointer to the processor whose assigned subrange of buckets contains
key value K;. This step requires a binary search in {(a,br)|k €

[L, pl}-

. Each processor sends to all other processors the keys in that other

processor’s subrange. This is carried out by having each processor
rank its list of keys according to P; and permute the key and index
sequences, {K;} and {:}, accordingly. Let {K,} be the sorted {K;}
and let {/,} be the index in {K;} for {K,}. Note that P; has range
[1,p] and sorting is carried out strictly local to each processor. Each
processor then sends the appropriate subsequence of {K,} and {/,}
to the corresponding processor. This is an all-to-all (or complete
exchange) type of communication with message lengths of varying
sizes which permutes {K,} into a new sequence { K, }. At the end of
this step, every processor k stores a subsequence of { K, }, approx-
imately of length n/p, and the corresponding subsequence of {I,},
where {I,} are the indices in {K;} for the keys in {K,}. Further-
more, each subsequence of {K,} has range [a, bi).

. Each processor ranks its subsequence of keys and permutes its sub-

sequence of {I,} accordingly. Let {I;} be this permuted sequence.
Permuting {K,} at this point would result in a sorted sequence of
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keys. However, the objective is not to sort the original sequence
of keys but rather to find the permutation which sorts it (under
the assumption that the records associated with the keys are large
and one wants to permute them just once). Nonetheless, assume
such a permutation was carried out, then { K} would be the sorted
sequence of {K;}, and {I;} would be the index in {K;} for {K;}.
Therefore the permutation, {R;}, which converts {K;} into {K,} is
computed as

R(1Is) «— s.

This is carried out as follows:

(a) From {I,}, create an array of pointers P, pointing to the pro-
cessor which stores K;(Is) in the original sequence {K;}.

(b) Use Ps to create p — 1 buffers in each processor to store the
local values of {Is} and {s} which need to be sent to other
processors. Where P; points to the local processor, compute
the rank R(I) as described above.

(c) Each processor sends its p — 1 buffers to the p — 1 other proces-
sors. This is an all-to-all type of communication with message
lengths of varying sizes. At the end of this step each processor
has the values of Iy and s corresponding to its subsequence of
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{1}
(d) Each processor computes ranks R([;) with its received values
of I, and s.

4.2. Theoretical Analysis. The following analysis is based on the
distributed memory MIMD model presented by the Intel iPSC/860. Note
that this model is weaker than either the scan model or the strict EREW
model since it does not allow exclusive reads from parallel memory. Parallel
memory access must be initiated by a send instruction and is completed
only by a receive instruction. This model here will be referred to as the
message passing model.

For purposes of analysis, assume m’ = p?. BEach processor stores n/p
keys, so step 1 takes O(n/p) time and steps 2 and 3 take O(p) and O(p?)
time respectively. Step 4 requires each processor to perform n/p local binary
searches over p elements and thus takes O(n/plogp) time. Step 5 requires
each processor to locally sort n/p elements in the range [1,p]. This can be
carried out with sequential bucket sort in O(n/p) time. Finally, the time for
step 6 will depend on how successful step 3 was in its decomposition of the
key range. Assuming that each processor has O(n/p) keys, then step 6 will
require O(n/p) time. Note that step 6a does not require searching because
{K;} is evenly distributed across the processors.

It is conceivable for there to be more than O(n/p) keys in a processor



in step 6. Such a situation would arise if the key density distribution had a
large number of repeated keys. Specifically, there would have to be at least
one barrel with greater than O(n/p) keys. Since each barrel accounts for
m/p? buckets, this implies there should be no more than O(n/p) repeated
keys in each m/p? subrange of key values. This proves the following theorem:

THEOREM 4.1. The barrel-sort algorithm sorts a disordered sequence of
n integers chosen randomly in the range [1, O(n)] with no more than O(n/p)
repeated values per O(n/p*) subrange in time O(n/plogp) using p message
PasSing processors.

4.3. Application Analysis. Unlike queue-sort, the amount of arith-
metic computation in barrel-sort can be a substantial part of the calculation.
The difference is due to the medium-grain parallelism targeted by barrel-sort.
The major contributions from arithmetic computation occur in steps 1, 4, 5
and 6. Inter-processor communication takes place in steps 2, 5 and 6.

The Gaussian-distributed disordered sequence used to analyze queue-
sort was also used with barrel sort (see figure 1). With m = 219, m’ = 21!
and n = 223, using all 128 processors the time to complete barrel-sort was
3.20 sec. The profiling was carried out with 64 processors for which the total
time was 5.25 sec. Of this, step 2 required 0.10 sec, and the communication
in steps 5 and 6 required 1.08 and 0.69 sec respectively. The remaining 3.38
sec were due to computation.

Communication time, Teopmm, on the iPSC/860 is adequately modelled

by
(41) Tcomm(k) =10 + ktsend

where k is the number of bytes in the message, {, is the latency, and 5,4 is
the time per byte. Using the numbers from [8], for long messages (greater
than 100 bytes), t, = 149u sec and ts.,q4 = 0.36u sec and for short messages
lo,, = T4p sec and f4enq, = 0.19u sec. Step 2 can be implemented using
a pairwise exchange algorithm such that only logp messages are required
per processor, each of length 4m’ bytes. Each complete exchange in steps
5 and 6 is implemented as 3(p — 1) messages per processor, with (p — 1)
messages of length 4 bytes and 2(p — 1) messages approximately of length
4n/p? bytes. The actual length depends on decomposition determined in
step 3; for the test case all the message lengths were within 9% of this value.
Taken altogether, interprocessor communication takes

Teomm = [4(p—1)+Hog plto+2(p—1)to,, +4[4(p—1)n/p*+m' l0g pltsena+8(p—1)tsend, -
(4.2)

For 64 processors and sequence parameters above, (5) works out to 0.81 sec.

The measured time was 1.87 sec. The difference between the expected and



TABLE 1
Performance of queue-sort and barrel-sort.

Algorithm  Processors time (sec) time (sec)

Gaussian Linear

queue-sort 8k 21.51 16.80
(on CM-2) 16k 11.15 8.60
32k 5.60 4.38

barrel-sort 64 5.25 5.53
(on iPSC) 128 3.20 3.52

bucket-sort 1 1.15 1.15
(on YMP) 8 0.19 0.19

measured time is attributable to an idiosyncrasy in the iPSC communica-
tion hardware wherein a send and receive occurring a short interval apart
are carried out sequentially when they could be carried out concurrently.
This effectively doubles the communication time in a complete exchange,
bringing the predicted time up to 1.58 sec. Furthermore, accounting for
the longest messages in each step of the exchange (which amounted to a
total transmission 7% greater than expected) results in a predicted time of
1.68 sec, which is within 10% of the measured time. Bokhari [7] describes
a complete exchange algorithm on the iPSC which does not suffer from this
idiosyncrasy and would conceivably result in much improved communication
performance.

5. Discussion. Table 1 presents the best results for queue-sort and
barrel-sort on the Connection Machine CM-2 and the iPSC/860 respectively.
Times are given for both the Gaussian distributed and the linear distributed
key densities (see figures 1 and 7). The maximum queue size in queue-sort
was made large enough to allow completion in a single iteration. In a real
application, the memory available for the queues would be limited to that
which was unused by the rest of the application, the resulting impact on
performance may be deduced from figure 2. The number of barrels used
in barrel-sort was 2048. The current implementation of barrel-sort could
not be run with less than 64 processors because of memory restrictions,
although with some modifications 32 processor results could be obtained.
For comparison, the performance of a vectorized bucket sort on 1 and 8
processors of the Cray YMP is also given. The Cray YMP code was obtained
from Cray Research Inc. in response to the NAS Parallel Benchmarks and
is highly tuned to this architecture.

It is encouraging to see that the performance of queue-sort and barrel-
sort are comparable. Queue-sort involves virtually no arithmetic compu-



tation but depends on many single-word transmissions to order the data.
The total amount of data motion is about the same for both queue-sort and
barrel-sort. Queue-sort essentially comsists of n single-word transmissions
using n processors followed by n single-word transmissions using n/m pro-
cessors. Therefore for queue-sort to be competitive the overhead on message
transmission must be very low. On the other hand, barrel-sort consists of two
complete exchanges each involving p— 1 transmissions of approximately n/p?
words using p processors. Barrel-sort attempts to minimize the number of
messages transmitted at the expense of additional arithmetic computation.
Therefore barrel-sort should perform well on machines with a high overhead
on message transmission so long as medium-scale parallelism is available.

The Cray YMP performance taken from [4] is given for comparison.
Neither queue-sort on the CM-2 nor barrel-sort on the iPSC/860 can match
the performance of a vectorized bucket-sort on the YMP. In general, sorting
requires a very high memory bandwidth and relatively little computation.
The high memory bandwidth is a well known feature of the Cray machines
and one expects good performance on the YMP for this problem. These par-
allel architectures have exhibited comparatively good performance for this
problem with highly tuned radix sorts (see [2, 4, 6]), however the results
presented in this paper are intended primarily for understanding the algo-
rithms, not benchmarking the machines. Benchmark results for this problem
may be found in [4].

6. Conclusions. Two new parallel integer sorting algorithms, queue-
sort and barrel-sort, have been presented and analyzed in detail. These al-
gorithms do not have optimal parallel complexity, yet they show respectable
performance in practice. Queue-sort is designed for fine-scale parallel archi-
tectures which allow the queueing of multiple messages to the same desti-
nation. Barrel-sort is designed for medium-scale parallel architectures with
a high message passing overhead. The performance results from the im-
plementation of queue-sort on a Connection Machine and barrel-sort on a
128 processor iPSC/860 are presented and compared to a a fully vectorized
bucket sort on the Cray YMP. The parallel machines show poorer perfor-
mance because of their comparatively slower memory systems.
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